Even-hole-free graphs of Large treewidth

Dewi Sintiari joint work with Nicolas Trotignon
LIP, ENS de Lyon

(1) Problem and Motivation

(2) Layered wheels

- Definition and properties
- A conjecture
- An attempt towards the answer

(1) Problem and Motivation

(2) Layered wheels

- Definition and properties
- A conjecture
- An attempt towards the answer

EHF graphs is a class of graphs not containing even hole
Remark. An EHF graph may contains pyramid, but no theta, prism, and even-wheel.

Figure: theta, prism, and pyramid (dashed edge: path of length ≥ 1)

Connectivity of EHF graphs

- Bounded treewidth?
\rightarrow NO: cliques are EHF graphs
- Bounded rankwidth?
\rightarrow NO: a set of diamond-free EHF graphs (constructed by Adler, et.al.)

Theorem 1[a]

${ }^{a}$ Cameron, da Silva, Huang, Vǔsković, 2016

Every triangle-free EHF graph has treewidth at most 5.

Figure: triangle-free EHF graph

Theorem 1[a]

${ }^{\text {a }}$ Cameron, da Silva, Huang, Vǔsković, 2016
Every triangle-free EHF graph has treewidth at most 5 .

Figure: triangle-free EHF graph

Original motivation:

Does K_{4}-free EHF graphs have bounded treewidth?

We propose similar question for (theta, triangle)-free graphs.

Wheels with two non-adjacent centers:

- In triangle-free EHF graphs: always nested
- In (theta, triangle)-free graphs: nested, except the cube
- In K_{4}-free EHF graphs: nested with several exceptions

Figure: nested-wheel, cube, and several exceptions

Theorem 2

There exist:
(1) (theta, triangle)-free graphs with arbitrarily large treewidth and rankwidth
(2) K4-free EHF graphs with arbitrarily large treewidth and rankwidth

Remark. The graphs in Thm 2 are variants of layered wheels

(1) Problem and Motivation

(2) Layered wheels

- Definition and properties
- A conjecture
- An attempt towards the answer

Figure: Layered wheel $G_{3,4}$

Layered wheel $G_{\ell, k}$ for $\ell \geq 1, k \geq 4$:

- it consists of ℓ layers
- it has girth equals to k

Construction:

$G(\ell, k)$, with $\ell=3$ and $k=4$

Construction:

$$
G(\ell, k) \text {, with } \ell=3 \text { and } k=4
$$

Construction:

$$
G(\ell, k) \text {, with } \ell=3 \text { and } k=4
$$

Construction:

$G(\ell, k)$, with $\ell=3$ and $k=4$

Some properties of layered wheel:

- Every vertex has neighbors in the next layers
- Every vertex has at most one ancestor
- The last layer contains vertices of degree 2 (hence, it is 3-colorable)

Figure: Layered wheel $G_{3,4}$

For $\ell \geq 1, k \geq 4$, layered wheel $G_{\ell, k}$ satisfies the following:
(1) $\operatorname{girth}\left(G_{\ell, k}\right)=k$
by the rule of subdivision
(2) $t w\left(G_{\ell, k}\right) \geq \ell$
because it contains a clique minor on ℓ vertices
(3) $r w\left(G_{\ell, k}\right) \geq f(\ell)$, for some linear function ℓ
our proof uses similar technique as for diamond-free EHF graphs
(4) It does not contain a theta

Proof sketch.

(9) For $\ell \geq 1, k \geq 4, G_{\ell, k}$ does not contain a theta

$G_{\ell, k}$ is full of:

Lemma 1

For $\ell \geq 1, k \geq 4$, layered wheel $G_{\ell, k}$:

- contains r^{ℓ} vertices for some $r>5$, and
- $\ell \leq t w\left(G_{\ell, k}\right) \leq 105 \ell$.

So, $t w\left(G_{\ell, k}\right) \leq 105 \log _{r} \mid V\left(G_{\ell, k} \mid\right)$

Lemma 1

For $\ell \geq 1, k \geq 4$, layered wheel $G_{\ell, k}$:

- contains r^{ℓ} vertices for some $r>5$, and
- $\ell \leq t w\left(G_{\ell, k}\right) \leq 105 \ell$.

So, $t w\left(G_{\ell, k}\right) \leq 105 \log _{r} \mid V\left(G_{\ell, k} \mid\right)$

Proof sketch.

Lemma 2
Any subgraph of $G_{\ell, k}$ admits a $\frac{2}{3}$-balanced separation of order at most ℓ.

Theorem 3 [a]
${ }^{\text {a }}$ Dvốák \& Norin, 2014
For any graph $G, t w(G) \leq 105 \cdot \ell$, where ℓ is the smallest number such that every subgraph of G admits a $\frac{2}{3}$-balanced separation of order $\leq \ell$.

Conjecture 1

For any (theta, triangle)-free graph G, and some constant $c>0$,

$$
t w(G) \leq c \cdot \log (|V(G)|) .
$$

Conjecture 2
Same conjecture for K_{4}-free EHF graphs.

Consequence.

A lot of graph optimization problems on (theta, triangle)-free graph are poly-time solvable.
In particular, given a tree decomposition of n-vertex graph G with width t, such a problem is solvable in time $t^{O(t)} \cdot n$.

Conjecture 1

For any (theta, triangle)-free graph G, and some constant $c>0$,

$$
t w(G) \leq c \cdot \log |V(G)| .
$$

Conjecture 1

For any (theta, triangle)-free graph G, and some constant $c>0$,

$$
t w(G) \leq c \cdot \log |V(G)|
$$

Proof plan.

Let $t>0, r>1$, and \mathcal{F}_{ℓ} be a set of graph such that:
(0) for every $H \in \mathcal{F}_{\ell}$, we have $|V(H)| \geq r^{\ell}$
(2) every (theta, triangle, \mathcal{F}_{ℓ})-free graph has treewidth at most $t \cdot \ell$.

Hence any (theta, triangle)-free graph G with $r^{\ell} \leq|V(G)|<r^{\ell+1}$ satisfies

$$
t w(G) \leq t \cdot(\ell+1) \leq t \cdot\left(\log _{r}|V(G)|+1\right) \leq c \cdot \log |V(G)|
$$

for some constant c.

Conjecture 1

For any (theta, triangle)-free graph G, and some constant $c>0$,

$$
t w(G) \leq c \cdot \log |V(G)|
$$

Proof plan.

Let $t>0, r>1$, and \mathcal{F}_{ℓ} be a set of graph such that:
(0) for every $H \in \mathcal{F}_{\ell}$, we have $|V(H)| \geq r^{\ell}$
(2) every (theta, triangle, \mathcal{F}_{ℓ})-free graph has treewidth at most $t \cdot \ell$.

Hence any (theta, triangle)-free graph G with $r^{\ell} \leq|V(G)|<r^{\ell+1}$ satisfies

$$
t w(G) \leq t \cdot(\ell+1) \leq t \cdot\left(\log _{r}|V(G)|+1\right) \leq c \cdot \log |V(G)|
$$

for some constant c.

Remark. A possible candidate $\mathcal{F}_{\ell}=\{$ layered wheels of ℓ layers $\}$.
\rightarrow (1) is satisfied, how about (2)?

A weakening result: $\mathcal{F}_{\ell}=\{\ell$-wheels $\}$
An ℓ-wheel is a graph formed by a hole H and a set X of ℓ vertices, such that (H, x) is a wheel for any $x \in X$.

A weakening result: $\mathcal{F}_{\ell}=\{\ell$-wheels $\}$
An ℓ-wheel is a graph formed by a hole H and a set X of ℓ vertices, such that (H, x) is a wheel for any $x \in X$.

Theorem 4

For $\ell \geq 0$, any (theta, triangle, ℓ-wheel)-free graph has treewidth $O\left(\left(\frac{c(\ell+2)^{2}}{\log (\ell+2)}\right)^{19}\right.$ polylog $\left.\left(\frac{c(\ell+2)^{2}}{\log (\ell+2)}\right)\right)$ for some constant c.

A weakening result: $\mathcal{F}_{\ell}=\{\ell$-wheels $\}$
An ℓ-wheel is a graph formed by a hole H and a set X of ℓ vertices, such that (H, x) is a wheel for any $x \in X$.

Theorem 4

For $\ell \geq 0$, any (theta, triangle, ℓ-wheel)-free graph has treewidth $O\left(\left(\frac{c(\ell+2)^{2}}{\log (\ell+2)}\right)^{19}\right.$ polylog $\left.\left(\frac{c(\ell+2)^{2}}{\log (\ell+2)}\right)\right)$ for some constant c.

Problem:

- An ℓ-wheel contains only $\geq r \cdot \ell$ vertices for some constant r.
- It might be possible to improve the bound of Thm 4 into a linear function $f(\ell)$, but might not be better than that.

Proof sketch.

General tools to bound the treewidth:

- A min-cut separation of a graph H is a partition (A, C, B) of $V(H)$, where C is a cutset separating A and B, such that:
- $H[A]$ and $H[B]$ are both non-empty and connected
- Every vertex $v \in C$ has neighbor in both A and B

Lemma 3

If G is (theta, triangle, ℓ-wheel)-free, then any min-cut separation of
$H \subseteq_{\text {ind }} G$ has order $\leq \frac{c(\ell+2)^{2}}{\log (\ell+2)}$ for some constant c.

Lemma $4\left[{ }^{a}\right]$

${ }^{a}$ with Thomassé
Any graph G satisfying the following, has treewidth $\leq O\left((2 \ell)^{19}\right.$ polylog $\left.(2 \ell)\right)$.

- it contains no clique $K_{2 \ell}$, and
- every min-cut separation of $H \subseteq_{\text {ind }} G$ has order $\leq \ell$.

Improvement

Lemma 4+ $\left.{ }^{a}\right]$

aPilipczuk, April 2019
Any graph G satisfying the following, has treewidth $\leq(k-1) \ell^{3}-1$.

- it contains no clique K_{k}, and
- every min-cut separation of $H \subseteq_{\text {ind }} G$ has order $\leq \ell$.

Proof idea. Using a so-called potential maximal clique (PMC).
Theorem 4+
For $\ell \geq 0$, any (theta, triangle, ℓ-wheel)-free graph has treewidth $\leq 2 \cdot\left(\frac{c(\ell+2)^{2}}{\log (\ell+2)}\right)^{3}-1$ for some constant c.

Figure: Construction of K_{4}-free EHF-layered-wheels

Theorem 4

For any $\ell \geq 1$, there exists an EHF-layered-wheel with treewidth $\geq \ell$ and rankwidth $\geq f(\ell)$ for some function f.

Remark. This answers the following question of Cameron et.al.: is the treewidth/cliquewidth of an EHF graphs bounded by a function of its clique number?
no, because EHF-layered-wheels are K_{4}-free and even-hole-free

Conjecture 1

For any (theta, triangle)-free graph G, and some constant $c>0$,

$$
t w(G) \leq c \cdot \log (|V(G)|) .
$$

Let $t>0, r>1$, and \mathcal{F}_{ℓ} be a set of graphs such that:
(0) for every $H \in \mathcal{F}_{\ell}$, we have $|V(H)| \geq r^{\ell}$
(2) every (theta, triangle, \mathcal{F}_{ℓ})-free graph has treewidth at most $t \cdot \ell$

Question

What \mathcal{F}_{ℓ} could be?

Conjecture 1

For any (theta, triangle)-free graph G, and some constant $c>0$,

$$
t w(G) \leq c \cdot \log (|V(G)|) .
$$

Let $t>0, r>1$, and \mathcal{F}_{ℓ} be a set of graphs such that:
(0) for every $H \in \mathcal{F}_{\ell}$, we have $|V(H)| \geq r^{\ell}$
(2) every (theta, triangle, \mathcal{F}_{ℓ})-free graph has treewidth at most $t \cdot \ell$

Question

What \mathcal{F}_{ℓ} could be?

- Thank you for your attention! -

