EVEN-HOLE-FREE GRAPHS OF LARGE TREEWIDTH

DEWI SINTIARI joint work with Nicolas Trotignon

LIP, ENS DE LYON

Sintiari, Trotignon (LIP, ENS Lyon)

EVEN-HOLE-FREE GRAPHS OF LARGE TREEWIDTH

November 17, 2020 1/21

Problem and Motivation

2 Layered wheels

- Definition and properties
- A conjecture
- An attempt towards the answer

Problem and Motivation

Layered wheels

- Definition and properties
- A conjecture
- An attempt towards the answer

Image: A matrix

EHF graphs is a class of graphs not containing even hole

Remark. An EHF graph may contains pyramid, but no theta, prism, and even-wheel.

Figure: theta, prism, and pyramid (dashed edge: path of length \geq 1)

Connectivity of EHF graphs

- Bounded treewidth?
 - \rightarrow NO: cliques are EHF graphs
- Bounded rankwidth?
 - \rightarrow NO: a set of diamond-free EHF graphs (constructed by Adler, et.al.)

Theorem 1^[*a*]

^aCameron, da Silva, Huang, Vůsković, 2016

Every triangle-free EHF graph has treewidth at most 5.

Figure: triangle-free EHF graph

Theorem 1[^a]

^aCameron, da Silva, Huang, Vůsković, 2016

Every triangle-free EHF graph has treewidth at most 5.

Figure: triangle-free EHF graph

Original motivation:

Does K_4 -free EHF graphs have **bounded** treewidth?

We propose similar question for (theta, triangle)-free graphs.

Wheels with two non-adjacent centers:

- In triangle-free EHF graphs: always nested
- In (theta, triangle)-free graphs: nested, except the cube
- In K₄-free EHF graphs: nested with several exceptions

Figure: nested-wheel, cube, and several exceptions

Theorem 2

There exist:

- (theta, triangle)-free graphs with arbitrarily large treewidth and rankwidth
- K4-free EHF graphs with arbitrarily large treewidth and rankwidth

Remark. The graphs in Thm 2 are variants of layered wheels

Problem and Motivation

2 Layered wheels

- Definition and properties
- A conjecture
- An attempt towards the answer

Figure: Layered wheel G_{3,4}

Layered wheel $G_{\ell,k}$ for $\ell \geq 1, k \geq 4$:

- it consists of ℓ layers
- it has girth equals to k

$G(\ell, k)$, with $\ell = 3$ and k = 4

٠

Sintiari, Trotignon (LIP, ENS Lyon)

 $G(\ell, k)$, with $\ell = 3$ and k = 4

Sintiari, Trotignon (LIP, ENS Lyon)

・ロ・・ (日・・ (日・)

 $G(\ell, k)$, with $\ell = 3$ and k = 4

Sintiari, Trotignon (LIP, ENS Lyon)

A B > A B >

 $G(\ell, k)$, with $\ell = 3$ and k = 4

Sintiari, Trotignon (LIP, ENS Lyon)

・ ロ ト ・ 日 ト ・ 田 ト ・

 $G(\ell, k)$, with $\ell = 3$ and k = 4

Sintiari, Trotignon (LIP, ENS Lyon)

EVEN-HOLE-FREE GRAPHS OF LARGE TREEWIDTH

ヘロン ヘロン ヘビン・

 $G(\ell, k)$, with $\ell = 3$ and k = 4

Sintiari, Trotignon (LIP, ENS Lyon)

EVEN-HOLE-FREE GRAPHS OF LARGE TREEWIDTH

ヘロン ヘロン ヘビン・

 $G(\ell, k)$, with $\ell = 3$ and k = 4

Sintiari, Trotignon (LIP, ENS Lyon)

EVEN-HOLE-FREE GRAPHS OF LARGE TREEWIDTH

・ ロ ト ・ 日 ト ・ 田 ト ・

 $G(\ell, k)$, with $\ell = 3$ and k = 4

Sintiari, Trotignon (LIP, ENS Lyon)

EVEN-HOLE-FREE GRAPHS OF LARGE TREEWIDTH

ヘロン ヘロン ヘビン・

 $G(\ell, k)$, with $\ell = 3$ and k = 4

Sintiari, Trotignon (LIP, ENS Lyon)

EVEN-HOLE-FREE GRAPHS OF LARGE TREEWIDTH

November 17, 2020 9/21

ヘロマ ヘロマ ヘロマ イ

 $G(\ell, k)$, with $\ell = 3$ and k = 4

Sintiari, Trotignon (LIP, ENS Lyon)

EVEN-HOLE-FREE GRAPHS OF LARGE TREEWIDTH

November 17, 2020 9/21

・ ロ ト ・ 日 ト ・ 田 ト ・

Some properties of layered wheel:

- Every vertex has neighbors in the next layers
- Every vertex has at most one ancestor
- The last layer contains vertices of degree 2 (hence, it is 3-colorable)

Figure: Layered wheel G_{3,4}

For $\ell \geq 1$, $k \geq 4$, layered wheel $G_{\ell,k}$ satisfies the following:

• girth($G_{\ell,k}$) = k

by the rule of subdivision

2 $tw(G_{\ell,k}) \geq \ell$

because it contains a clique minor on ℓ vertices

• $rw(G_{\ell,k}) \ge f(\ell)$, for some linear function ℓ

our proof uses similar technique as for diamond-free EHF graphs

It does not contain a theta

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof sketch.

• For $\ell \geq 1$, $k \geq 4$, $G_{\ell,k}$ does not contain a theta

 $G_{\ell,k}$ is full of:

ヘロト ヘヨト ヘヨト ヘ

Lemma 1

For $\ell \geq 1$, $k \geq 4$, layered wheel $G_{\ell,k}$:

- contains r^{ℓ} vertices for some r > 5, and
- $\ell \leq tw(G_{\ell,k}) \leq 105\ell$.

So, $tw(G_{\ell,k}) \leq 105 \log_r |V(G_{\ell,k}|)$

Lemma 1

For $\ell \geq 1$, $k \geq 4$, layered wheel $G_{\ell,k}$:

- contains r^{ℓ} vertices for some r > 5, and
- $\ell \leq tw(G_{\ell,k}) \leq 105\ell$.

So, $tw(G_{\ell,k}) \leq 105 \log_r |V(G_{\ell,k}|)$

Proof sketch.

Lemma 2

Any subgraph of $G_{\ell,k}$ admits a $\frac{2}{3}$ -balanced separation of order at most ℓ .

Theorem 3 [^a]

^aDvořák & Norin, 2014

For any graph G, $tw(G) \le 105 \cdot \ell$, where ℓ is the smallest number such that every subgraph of G admits a $\frac{2}{3}$ -balanced separation of order $\le \ell$.

A conjecture

Conjecture 1

For any (theta, triangle)-free graph G, and some constant c > 0,

 $tw(G) < c \cdot \log(|V(G)|).$

Conjecture 2

Same conjecture for K_4 -free EHF graphs.

Consequence.

A lot of graph optimization problems on (theta, triangle)-free graph are poly-time solvable.

In particular, given a tree decomposition of *n*-vertex graph G with width t, such a problem is solvable in time $t^{O(t)} \cdot n$.

For any (theta, triangle)-free graph G, and some constant c > 0,

 $tw(G) \leq c \cdot \log |V(G)|.$

For any (theta, triangle)-free graph G, and some constant c > 0,

 $tw(G) \leq c \cdot \log |V(G)|.$

Proof plan.

Let t > 0, r > 1, and \mathcal{F}_{ℓ} be a set of graph such that:

- for every $H \in \mathcal{F}_{\ell}$, we have $|V(H)| \ge r^{\ell}$
- 2 every (theta, triangle, \mathcal{F}_{ℓ})-free graph has treewidth at most $t \cdot \ell$.

Hence any (theta, triangle)-free graph *G* with $r^{\ell} \leq |V(G)| < r^{\ell+1}$ satisfies

$$tw(G) \le t \cdot (\ell + 1) \le t \cdot (\log_r |V(G)| + 1) \le c \cdot \log |V(G)|$$

for some constant c.

For any (theta, triangle)-free graph G, and some constant c > 0,

 $tw(G) \leq c \cdot \log |V(G)|.$

Proof plan.

Let t > 0, r > 1, and \mathcal{F}_{ℓ} be a set of graph such that:

- for every $H \in \mathcal{F}_{\ell}$, we have $|V(H)| \ge r^{\ell}$
- 2 every (theta, triangle, \mathcal{F}_{ℓ})-free graph has treewidth at most $t \cdot \ell$.

Hence any (theta, triangle)-free graph *G* with $r^{\ell} \leq |V(G)| < r^{\ell+1}$ satisfies

$$tw(G) \le t \cdot (\ell+1) \le t \cdot (\log_r |V(G)|+1) \le c \cdot \log |V(G)|$$

for some constant *c*.

Remark. A possible candidate $\mathcal{F}_{\ell} = \{$ layered wheels of ℓ layers $\}$. \rightarrow (1) is satisfied, how about (2)?

A weakening result: $\mathcal{F}_{\ell} = \{\ell \text{-wheels}\}$

An ℓ -wheel is a graph formed by a hole H and a set X of ℓ vertices, such that (H, x) is a wheel for any $x \in X$.

• □ ▶ • □ ▶ • □ ▶

A weakening result: $\mathcal{F}_{\ell} = \{\ell \text{-wheels}\}$

An ℓ -wheel is a graph formed by a hole H and a set X of ℓ vertices, such that (H, x) is a wheel for any $x \in X$.

Theorem 4

For $\ell \geq 0$, any (theta, triangle, ℓ -wheel)-free graph has treewidth $O\left(\left(\frac{c(\ell+2)^2}{\log(\ell+2)}\right)^{19} \operatorname{polylog}\left(\frac{c(\ell+2)^2}{\log(\ell+2)}\right)\right)$ for some constant c.

A weakening result: $\mathcal{F}_{\ell} = \{\ell \text{-wheels}\}$

An ℓ -wheel is a graph formed by a hole H and a set X of ℓ vertices, such that (H, x) is a wheel for any $x \in X$.

Theorem 4

For $\ell \geq 0$, any (theta, triangle, ℓ -wheel)-free graph has treewidth $O\left(\left(\frac{c(\ell+2)^2}{\log(\ell+2)}\right)^{19} \operatorname{polylog}\left(\frac{c(\ell+2)^2}{\log(\ell+2)}\right)\right)$ for some constant c.

Problem:

- An ℓ -wheel contains only $\geq r \cdot \ell$ vertices for some constant r.
- It might be possible to improve the bound of Thm 4 into a linear function *f*(ℓ), but might not be better than that.

16/21

Proof sketch.

General tools to bound the treewidth:

- A *min-cut separation* of a graph *H* is a partition (*A*, *C*, *B*) of *V*(*H*), where *C* is a cutset separating *A* and *B*, such that:
 - *H*[*A*] and *H*[*B*] are both non-empty and connected
 - Every vertex $v \in C$ has neighbor in both A and B

Lemma 3

If *G* is (theta, triangle, ℓ -wheel)-free, then any min-cut separation of $H \subseteq_{\text{ind}} G$ has order $\leq \frac{c(\ell+2)^2}{\log(\ell+2)}$ for some constant *c*.

Lemma 4 [^a]

^awith Thomassé

Any graph *G* satisfying the following, has treewidth $\leq O((2\ell)^{19} \operatorname{polylog}(2\ell))$.

- it contains no clique $K_{2\ell}$, and
- every min-cut separation of $H \subseteq_{ind} G$ has order $\leq \ell$.

Improvement

Lemma 4+ [^{*a*}]

^aPilipczuk, April 2019

Any graph *G* satisfying the following, has treewidth $\leq (k-1)\ell^3 - 1$.

- it contains no clique K_k, and
- every min-cut separation of $H \subseteq_{ind} G$ has order $\leq \ell$.

Proof idea. Using a so-called *potential maximal clique* (PMC).

Theorem 4+

For $\ell \geq 0$, any (theta, triangle, ℓ -wheel)-free graph has treewidth $\leq 2 \cdot \left(\frac{c(\ell+2)^2}{\log(\ell+2)}\right)^3 - 1$ for some constant *c*.

Figure: Construction of K₄-free EHF-layered-wheels

Theorem 4

For any $\ell \ge 1$, there exists an EHF-layered-wheel with treewidth $\ge \ell$ and rankwidth $\ge f(\ell)$ for some function *f*.

Remark. This answers the following question of Cameron et.al.:

is the treewidth/cliquewidth of an EHF graphs bounded by a function of its clique number?

no, because EHF-layered-wheels are K₄-free and even-hole-free

For any (theta, triangle)-free graph G, and some constant c > 0,

 $tw(G) \leq c \cdot \log(|V(G)|).$

Let t > 0, r > 1, and \mathcal{F}_{ℓ} be a set of graphs such that:

- for every $H \in \mathcal{F}_{\ell}$, we have $|V(H)| \ge r^{\ell}$
- 2 every (theta, triangle, \mathcal{F}_{ℓ})-free graph has treewidth at most $t \cdot \ell$

Question

What \mathcal{F}_{ℓ} could be?

• □ ▶ • □ ▶ • □ ▶ • □ ▶

For any (theta, triangle)-free graph G, and some constant c > 0,

 $tw(G) \leq c \cdot \log(|V(G)|).$

Let t > 0, r > 1, and \mathcal{F}_{ℓ} be a set of graphs such that:

- for every $H \in \mathcal{F}_{\ell}$, we have $|V(H)| \ge r^{\ell}$
- 2 every (theta, triangle, \mathcal{F}_{ℓ})-free graph has treewidth at most $t \cdot \ell$

Question

What \mathcal{F}_{ℓ} could be?

- THANK YOU FOR YOUR ATTENTION! -

• □ ▶ • □ ▶ • □ ▶ • □ ▶